Small Business Innovation Research/Small Business Tech Transfer

Tunable Opto-electronic Oscillator Based on Photonic Integration of Ultra-High Q Resonators on a SiN Chip, Phase I

Completed Technology Project (2017 - 2018)

Project Introduction

The team comprising OEwaves Inc. and UC Davis offers to develop and demonstrate a SiN-platform integrated photonic circuit suitable for a spectrally pure chip-scale tunable opto-electronic RF oscillator (OEO) that can operate as a flywheel in high precision optical clock modules, as well as radio astronomy, spectroscopy, and local oscillator in radar and communications systems. The effort comprises integration of an ultra-high quality (Q) crystalline whispering gallery mode (WGM) microresonator with multiple lithographically defined photonic and electronic components and devices (including a laser, a detector and waveguides) on a single platform with nanometer-scale feature sizes. The proposed oscillator will be packaged in a volume of approximately 1cc, with net power consumption of less than 500 mW. The oscillator will produce a minimum of 10 mW of output RF power in Ka frequency band, and its single sideband (SSB) phase noise will be as low as -60 dBc/Hz at 10 Hz, and -160 dBc at 1 MHz and higher Fourier frequencies.

Primary U.S. Work Locations and Key Partners

Tunable Opto-electronic Oscillator Based on Photonic Integration of Ultra-high Q Resonators on a SiN Chip, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Tunable Opto-electronic Oscillator Based on Photonic Integration of Ultra-High Q Resonators on a SiN Chip, Phase I

Completed Technology Project (2017 - 2018)

Organizations Performing Work	Role	Туре	Location
OEwaves, Inc.	Lead Organization	Industry	Pasadena, California
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio
University of California- Davis(UC Davis)	Supporting Organization	Academia Asian American Native American Pacific Islander (AANAPISI)	Davis, California

Primary U.S. Work Locations	
California	Ohio

Project Transitions

D June 2017:

June 2017: Project Start

June 2018: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138695)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

OEwaves, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Andrey Matsko

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Tunable Opto-electronic Oscillator Based on Photonic Integration of Ultra-High Q Resonators on a SiN Chip, Phase I

Completed Technology Project (2017 - 2018)

Images

Briefing Chart Image

Tunable Opto-electronic Oscillator Based on Photonic Integration of Ultra-high Q Resonators on a SiN Chip, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/135568)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

